

M2 Reference

	Overview
	서비스 환경

	문제 정의

	솔루션

	Architecture
	Call Chain

	모듈

	m2.global
	cacheEnv

	미분류 TO DO

	Virtual Host Componenets

	Functions

	API

	CLI

	Demo

	Tips

Overview

M2 는 WineSOFT에서 개발하는 On the fly 처리 플랫폼이다.

서비스 환경

온라인 콘텐츠는 유행이다.

	더 많이

	더 짧게

더 많은 콘텐츠를 더 빠르게 생산/유통 시킬 수 있는 솔루션이 필요하다.

	AS-IS

	TO-BE

	PC

	Mobile

	Monolithic Archicurecture

	Micro-Service Architecture

	On-Premise

	Cloud

	Single Core

	Multi Core

하지만 커다한 컴퓨팅환경 변화에도 불구하고, 사고는 여전히 Batch 에 머물러 있다.

문제 정의

더 많은 콘텐츠를 더 짧게 소비하는 트렌드와 Batch 는 맞지 않는다.
민첩성(Agility)만 저하되면 다행이련만 지속적으로 증가하는 관리비용은 빚이다.

	모든 상품 이미지에 대해 신규 썸네일 해상도를 지원하는데 얼마나 소요될까요?

	이번에 나오는 최신 아이폰 해상도에 맞추어 모든 상품기술서를 변경하는데 얼마나 소요될까요?

	오늘 밤 새로운 상품이 유입되는데 얼마나 될지 모르겠어요. 내일 아침 서비스에 노출할 수 있을까요?

이상의 질문에 즉시 YES! 라고 대답할 수 있는 새로운 방식이 필요하다.

솔루션

M2 는 On the fly 컨셉을 구현한다.

	/

	Batch

	On the fly

	방식

	일괄

	OnDemand

	우선순위

	없음

	요청순

	생산기간

	Batch 수행기간

	요청에 의한 시분할

	실패처리

	재 Batch

	Purge/해당 콘텐츠 재요청

	보관

	스토리지 or 데이터베이스

	메모리 or 로컬 디스크(분산)

	삭제

	없거나 별도 작업

	유효시간(TTL)에 의한 자동삭제

검증된 서비스 경험은 Contents Service Patterns [https://csp-kr.readthedocs.io/ko/latest/] 으로 제공된다.

Architecture

M2 아키텍쳐 컨셉은 확장성 있는 마이크로 서비스와 손쉬운 통합이다.
구조는 다음과 같다.

[image: ../_images/0001.png]

각 구성요소의 역할과 책임은 다음과 같다.

	Core - M2 라이프 사이클, RESTful API, 설정관리, 라이선스

	Runtime - 서비스 런타임, 가상호스트 관리, 전역자원, 시스템 추상화

	Modules - HTTP와 Payload를 다루는 단위 기능 라이브러리

	Virtual Host - 가상호스트, 로그, 통계, 세션, 라우팅, 업/다운 스트림

	Call Chain - 빌트인, 커스텀, 파이프라인, 외부 자원연계, 분기, 트레이스

	Workload - 비지니스 로직, 콘텐츠

Call Chain

준비된 모듈을 유연하게 연결하여 Workload를 on the fly로 처리한다.

[image: ../_images/0002.png]

이렇게 하나의 Workload를 처리하기 위해 연결된 흐름을 콜체인 Call Chain 이라고 부른다.

Call Chain 동작방식은 Open Tracing [https://opentracing.io/] 의 SPANS 와 TRACE 컨셉으로 이해하면 쉽다.

[image: ../_images/opentracing.png]

Call Chain 은 HTTP Transaction 을 처리하는 일종의 Micro Service Bus로 3가지 흐름이 존재한다.

	Runtime 에 의한 가상호스트 사이의 연결

[image: ../_images/0005.png]

	Virtual Host 내에 사전 정의된 모듈의 연결.
대표적으로 《임의의 외부 이미지를 다운로드/RESIZE 한 뒤 캐싱 서비스한다.》 라면 복잡한 구성없이 모듈 활성화만으로 Call Chain 을 구성한다.

[image: ../_images/0004.png]

	Virtual Host 내에 사용자가 임의로 구성한 연결.
임의의 비지니스 로직 구현이나 Legacy 연계에 적합하다.

[image: ../_images/0006.png]

모듈

모듈은 HTTP Transaction의 개별 구성요소를 다룰 수 있도록 개발된 단위 기능이다.
모듈의 대분류는 다음과 같다.

	Config - 설정, 라이선스, 클러스터 등

	Management - 로그, 통계, API, SNMP 등

	Network - DNS, 소켓, 풀링, 헬쓰체커 등

	HTTP - 위변조, ACL, URL 전처리 등

	Payload - 도큐먼트, 이미지, 비디오 등

	Traffic - 바이패스, 쓰로틀링 등

	Cache - 메모리/디스크 캐싱, 파일시스템 등

	Authentication - URL 암복호화, AWS 인증 등

	Cloud - AWS/GCP/Azure 연계

	APM - Datadog 등

m2.global

cacheEnv

m2.vhost.cache 구동환경을 구성한다.

"cacheEnv" : {
 "storage" : {
 "disks" : [
 { "path": "/cache1" },
 { "path": "/cache2", "quota": 100 },
],
 "error": {
 "cycle": 60,
 "count": 10,
 "onCrash": "hang"
 },
 "cleanUp": {
 "diskSize": 0,
 "indexCount": 0
 }
 },
 "memory": {
 "systemRatio": 100,
 "systemFreeRatio": 40
 "contentRatio": 50
 },
 "cleanUp": {
 "time": "02:00",
 "age": 0,
 "emptyDirectory": "delete"
 }
 "config": {
 "retentionDays": 30
 }
}

storage

	
disks=<LIST>

	
	콘텐츠 저장 디스크 목록

	최대 개수 255개

	미구성시 메모리 모드로 동작

	각 디스크마다 LRU(Least Recently Used)로 용량초과되지 않도록 동작

	
path=<PATH>

	디스크 경로

	
quota=<N>

	디스크 최대 캐싱 용량(GB)

	
error

	cycle 동안 count 만큼 I/O가 실패하면 디스크 배제

	
cycle=<SEC>

	실패 카운팅 주기

	
count=<COUNT>

	최대 실패회수

	
onCrash=<ENUM>

	모든 디스크 배제시 동작방식

	hang (기본) - 복구없이 동작

	bypass - 모든 요청 원본 바이패스. 디스크 복구시 서비스 재개.

	selfkill - 데몬 종료

	
cleanUp

	저장한계 도달시 삭제정책

	
diskSize=<GB>

	
	미설정시(또는 0) 디스크 용량의 20% 삭제

	설정시 해당 용량만큼 디스크 삭제

	
indexCount=<COUNT>

	
	미설정시(또는 0) 인덱싱 10% 삭제

	설정시 해당 개수만큼만 인덱싱 삭제

memory

	
systemRatio=<PERCENTAGE>

	물리 메모리 사용비율. 예를 들어 8GB인 환경에서 이 값이 50 이라면 4GB로 처리함

	
systemFreeRatio=<PERCENTAGE>

	systemRatio 적용 후, 시스템 Free영역비율. 최대 40

	
contentsRatio=<PERCENTAGE>

	솔루션 가용메모리 중 Contents 적재비율

cleanUp

하루 한번 서비스부하가 가장 적은 시간에 디스크 클린업을 수행한다.

	
time=<mm:ss>

	시작시간 (기본: 02:00)

	
age=<N>

	0 보다 큰 경우 age 기간동안 미접근 콘텐츠 삭제

	
emptyDirectory=<ENUM>

	빈 디렉토리 삭제 정책

	delete (기본) 삭제

	keep 유지

config

	
retentionDays=<N>

	설정 유지기간(일)

미분류 TO DO

	<Server><Cache><Listen>

	<Server><Cache><MaxSockets Reopen=》75》>80000</MaxSockets>

	<Server><Cache><HttpClientSession>

	<Server><Cache><EmergencyMode>OFF</EmergencyMode>

	<Server><Cache><SyncStale>ON</SyncStale>

Virtual Host Componenets

가상호스트 컴포넌트 란 가상호스트에 종속되어 사용되는 컴포넌트를 의미한다.
대표적으로 로그, 통계, DIMS가 존재한다.

Functions

함수 체인을 구성하기 위한 개별함수 리스트를 제공한다.

	http.buf.contentlength 버퍼링 후 Content-Length 헤더를 부여한다.

	image.split.oversize 일정길이 이상의 이미지를 분할한다.

	http.render.jpg 웹페이지를 JPG로 변환한다.

	aws.s3.upload AWS-S3에 업로드한다.

	http.src.sslonload 페이지 내 참조된 src 를 SSL/TLS로 onloading 한다.

	http.src.remove.obsolete 페이지 내 유해 엘레멘트를 제거한다.

	http.page.folding 상품기술서 접기를 구현한다.

API

API는 목적에 따라 2가지로 구분된다.

	External - 서비스 관리, 운영 목적의 대고객 API

	Internal - 서비스 컨텍스트 관리, 컴포넌트 연동을 위한 워크로드 처리용 API

CLI

리눅스 콘솔의 m2 명령어 모음이다.

m2 init
m2 stop
m2 purge
m2 cluster
m2 vhost
m2 gcomp
m2 vcomp

Demo

서비스 상품별 레퍼런스, 가상호스트 구성, 함수 체인, 데모와 그 아키텍쳐 모음이다.

	코어/캐싱엔진

	스마트 API

	미디어 HLS/trimming

	프론트엔진/상품기술서

	이미지 처리

	스마트배너

	마이그레이션 게이트웨이

Tips

구현시 주의사항, 팁 모음이다.

	DIMS 동작방식과 주의사항

	외부 이미지 참조시 배제와 복구정책

	Transfer-Encoding: chunked 의 이해

	가상호스트 링크시점

	갱신용 가상호스트 구성패턴

	마이그레이션 3원칙

색인

 기호
 | C
 | D
 | E
 | F
 | I
 | L
 | M
 | N
 | O
 | P
 | S
 | V

기호

 	
 	
 --accesslog-file=<PATH>

 	nghttpx command line option

 	
 --accesslog-format=<FORMAT>

 	nghttpx command line option

 	
 --accesslog-syslog

 	nghttpx command line option

 	
 --accesslog-write-early

 	nghttpx command line option

 	
 --add-forwarded=<LIST>

 	nghttpx command line option

 	
 --add-request-header=<HEADER>

 	nghttpx command line option

 	
 --add-response-header=<HEADER>

 	nghttpx command line option

 	
 --add-x-forwarded-for

 	nghttpx command line option

 	
 --altsvc=<PROTOID,PORT[,HOST,[ORIGIN]]>

 	nghttpx command line option

 	
 --api-max-request-body=<SIZE>

 	nghttpx command line option

 	
 --backend-address-family=(auto|IPv4|IPv6)

 	nghttpx command line option

 	
 --backend-connect-timeout=<DURATION>

 	nghttpx command line option

 	
 --backend-connections-per-frontend=<N>

 	nghttpx command line option

 	
 --backend-connections-per-host=<N>

 	nghttpx command line option

 	
 --backend-http-proxy-uri=<URI>

 	nghttpx command line option

 	
 --backend-http2-connection-window-size=<SIZE>

 	nghttpx command line option

 	
 --backend-http2-decoder-dynamic-table-size=<SIZE>

 	nghttpx command line option

 	
 --backend-http2-encoder-dynamic-table-size=<SIZE>

 	nghttpx command line option

 	
 --backend-http2-max-concurrent-streams=<N>

 	nghttpx command line option

 	
 --backend-http2-settings-timeout=<DURATION>

 	nghttpx command line option

 	
 --backend-http2-window-size=<SIZE>

 	nghttpx command line option

 	
 --backend-keep-alive-timeout=<DURATION>

 	nghttpx command line option

 	
 --backend-max-backoff=<DURATION>

 	nghttpx command line option

 	
 --backend-read-timeout=<DURATION>

 	nghttpx command line option

 	
 --backend-request-buffer=<SIZE>

 	nghttpx command line option

 	
 --backend-response-buffer=<SIZE>

 	nghttpx command line option

 	
 --backend-write-timeout=<DURATION>

 	nghttpx command line option

 	
 --backend=(<HOST>,<PORT>|unix:<PATH>)[;[<PATTERN>[:...]][[;<PARAM>]...]

 	nghttpx command line option

 	
 --backlog=<N>

 	nghttpx command line option

 	
 --cacert=<PATH>

 	nghttpx command line option

 	
 --ciphers=<SUITE>

 	nghttpx command line option

 	
 --client-cert-file=<PATH>

 	nghttpx command line option

 	
 --client-ciphers=<SUITE>

 	nghttpx command line option

 	
 --client-no-http2-cipher-black-list

 	nghttpx command line option

 	
 --client-private-key-file=<PATH>

 	nghttpx command line option

 	
 --client-psk-secrets=<PATH>

 	nghttpx command line option

 	
 --conf=<PATH>

 	nghttpx command line option

 	
 --daemon

 	nghttpx command line option

 	
 --dh-param-file=<PATH>

 	nghttpx command line option

 	
 --dns-cache-timeout=<DURATION>

 	nghttpx command line option

 	
 --dns-lookup-timeout=<DURATION>

 	nghttpx command line option

 	
 --dns-max-try=<N>

 	nghttpx command line option

 	
 --ecdh-curves=<LIST>

 	nghttpx command line option

 	
 --error-page=(<CODE>|*)=<PATH>

 	nghttpx command line option

 	
 --errorlog-file=<PATH>

 	nghttpx command line option

 	
 --errorlog-syslog

 	nghttpx command line option

 	
 --fastopen=<N>

 	nghttpx command line option

 	
 --fetch-ocsp-response-file=<PATH>

 	nghttpx command line option

 	
 --forwarded-by=(obfuscated|ip|<VALUE>)

 	nghttpx command line option

 	
 --forwarded-for=(obfuscated|ip)

 	nghttpx command line option

 	
 --frontend-frame-debug

 	nghttpx command line option

 	
 --frontend-http2-connection-window-size=<SIZE>

 	nghttpx command line option

 	
 --frontend-http2-decoder-dynamic-table-size=<SIZE>

 	nghttpx command line option

 	
 --frontend-http2-dump-request-header=<PATH>

 	nghttpx command line option

 	
 --frontend-http2-dump-response-header=<PATH>

 	nghttpx command line option

 	
 --frontend-http2-encoder-dynamic-table-size=<SIZE>

 	nghttpx command line option

 	
 --frontend-http2-max-concurrent-streams=<N>

 	nghttpx command line option

 	
 --frontend-http2-optimize-window-size

 	nghttpx command line option

 	
 --frontend-http2-optimize-write-buffer-size

 	nghttpx command line option

 	
 --frontend-http2-read-timeout=<DURATION>

 	nghttpx command line option

 	
 --frontend-http2-setting-timeout=<DURATION>

 	nghttpx command line option

 	
 --frontend-http2-window-size=<SIZE>

 	nghttpx command line option

 	
 --frontend-keep-alive-timeout=<DURATION>

 	nghttpx command line option

 	
 --frontend-max-requests=<N>

 	nghttpx command line option

 	
 --frontend-read-timeout=<DURATION>

 	nghttpx command line option

 	
 --frontend-write-timeout=<DURATION>

 	nghttpx command line option

 	
 --frontend=(<HOST>,<PORT>|unix:<PATH>)[[;<PARAM>]...]

 	nghttpx command line option

 	
 --help

 	nghttpx command line option

 	
 --host-rewrite

 	nghttpx command line option

 	
 --http2-no-cookie-crumbling

 	nghttpx command line option

 	
 --http2-proxy

 	nghttpx command line option

 	
 --ignore-per-pattern-mruby-error

 	nghttpx command line option

 	
 --include=<PATH>

 	nghttpx command line option

 	
 --insecure

 	nghttpx command line option

 	
 --listener-disable-timeout=<DURATION>

 	nghttpx command line option

 	
 --log-level=<LEVEL>

 	nghttpx command line option

 	
 --max-request-header-fields=<N>

 	nghttpx command line option

 	
 --max-response-header-fields=<N>

 	nghttpx command line option

 	
 --mruby-file=<PATH>

 	nghttpx command line option

 	
 	
 --no-add-x-forwarded-proto

 	nghttpx command line option

 	
 --no-http2-cipher-black-list

 	nghttpx command line option

 	
 --no-kqueue

 	nghttpx command line option

 	
 --no-location-rewrite

 	nghttpx command line option

 	
 --no-ocsp

 	nghttpx command line option

 	
 --no-server-push

 	nghttpx command line option

 	
 --no-server-rewrite

 	nghttpx command line option

 	
 --no-strip-incoming-early-data

 	nghttpx command line option

 	
 --no-strip-incoming-x-forwarded-proto

 	nghttpx command line option

 	
 --no-verify-ocsp

 	nghttpx command line option

 	
 --no-via

 	nghttpx command line option

 	
 --npn-list=<LIST>

 	nghttpx command line option

 	
 --ocsp-startup

 	nghttpx command line option

 	
 --ocsp-update-interval=<DURATION>

 	nghttpx command line option

 	
 --padding=<N>

 	nghttpx command line option

 	
 --pid-file=<PATH>

 	nghttpx command line option

 	
 --private-key-passwd-file=<PATH>

 	nghttpx command line option

 	
 --psk-secrets=<PATH>

 	nghttpx command line option

 	
 --read-burst=<SIZE>

 	nghttpx command line option

 	
 --read-rate=<SIZE>

 	nghttpx command line option

 	
 --redirect-https-port=<PORT>

 	nghttpx command line option

 	
 --request-header-field-buffer=<SIZE>

 	nghttpx command line option

 	
 --response-header-field-buffer=<SIZE>

 	nghttpx command line option

 	
 --rlimit-nofile=<N>

 	nghttpx command line option

 	
 --server-name=<NAME>

 	nghttpx command line option

 	
 --single-process

 	nghttpx command line option

 	
 --single-thread

 	nghttpx command line option

 	
 --stream-read-timeout=<DURATION>

 	nghttpx command line option

 	
 --stream-write-timeout=<DURATION>

 	nghttpx command line option

 	
 --strip-incoming-forwarded

 	nghttpx command line option

 	
 --strip-incoming-x-forwarded-for

 	nghttpx command line option

 	
 --subcert=<KEYPATH>:<CERTPATH>[[;<PARAM>]...]

 	nghttpx command line option

 	
 --syslog-facility=<FACILITY>

 	nghttpx command line option

 	
 --tls-dyn-rec-idle-timeout=<DURATION>

 	nghttpx command line option

 	
 --tls-dyn-rec-warmup-threshold=<SIZE>

 	nghttpx command line option

 	
 --tls-max-early-data=<SIZE>

 	nghttpx command line option

 	
 --tls-max-proto-version=<VER>

 	nghttpx command line option

 	
 --tls-min-proto-version=<VER>

 	nghttpx command line option

 	
 --tls-no-postpone-early-data

 	nghttpx command line option

 	
 --tls-sct-dir=<DIR>

 	nghttpx command line option

 	
 --tls-session-cache-memcached-address-family=(auto|IPv4|IPv6)

 	nghttpx command line option

 	
 --tls-session-cache-memcached-cert-file=<PATH>

 	nghttpx command line option

 	
 --tls-session-cache-memcached-private-key-file=<PATH>

 	nghttpx command line option

 	
 --tls-session-cache-memcached=<HOST>,<PORT>[;tls]

 	nghttpx command line option

 	
 --tls-ticket-key-cipher=<CIPHER>

 	nghttpx command line option

 	
 --tls-ticket-key-file=<PATH>

 	nghttpx command line option

 	
 --tls-ticket-key-memcached-address-family=(auto|IPv4|IPv6)

 	nghttpx command line option

 	
 --tls-ticket-key-memcached-cert-file=<PATH>

 	nghttpx command line option

 	
 --tls-ticket-key-memcached-interval=<DURATION>

 	nghttpx command line option

 	
 --tls-ticket-key-memcached-max-fail=<N>

 	nghttpx command line option

 	
 --tls-ticket-key-memcached-max-retry=<N>

 	nghttpx command line option

 	
 --tls-ticket-key-memcached-private-key-file=<PATH>

 	nghttpx command line option

 	
 --tls-ticket-key-memcached=<HOST>,<PORT>[;tls]

 	nghttpx command line option

 	
 --tls13-ciphers=<SUITE>

 	nghttpx command line option

 	
 --tls13-client-ciphers=<SUITE>

 	nghttpx command line option

 	
 --user=<USER>

 	nghttpx command line option

 	
 --verify-client

 	nghttpx command line option

 	
 --verify-client-cacert=<PATH>

 	nghttpx command line option

 	
 --verify-client-tolerate-expired

 	nghttpx command line option

 	
 --version

 	nghttpx command line option

 	
 --worker-frontend-connections=<N>

 	nghttpx command line option

 	
 --worker-read-burst=<SIZE>

 	nghttpx command line option

 	
 --worker-read-rate=<SIZE>

 	nghttpx command line option

 	
 --worker-write-burst=<SIZE>

 	nghttpx command line option

 	
 --worker-write-rate=<SIZE>

 	nghttpx command line option

 	
 --workers=<N>

 	nghttpx command line option

 	
 --write-burst=<SIZE>

 	nghttpx command line option

 	
 --write-rate=<SIZE>

 	nghttpx command line option

 	
 -b

 	nghttpx command line option

 	
 -c

 	nghttpx command line option

 	
 -D

 	nghttpx command line option

 	
 -f

 	nghttpx command line option

 	
 -h

 	nghttpx command line option

 	
 -k

 	nghttpx command line option

 	
 -L

 	nghttpx command line option

 	
 -n

 	nghttpx command line option

 	
 -o

 	nghttpx command line option

 	
 -s

 	nghttpx command line option

 	
 -v

 	nghttpx command line option

C

 	
 	cleanUp (내장 변수)

 	
 count=<COUNT>

 	M2 command line option

 	
 	
 cycle=<SEC>

 	M2 command line option

D

 	
 	Data_item_1 (내장 변수)

 	Data_item_2 (내장 변수)

 	
 	Data_item_3 (내장 변수)

 	
 diskSize=<GB>

 	M2 command line option

E

 	
 	error (내장 변수)

F

 	
 	Foo (C++ function)

I

 	
 	
 indexCount=<COUNT>

 	M2 command line option

L

 	
 	List (C++ type)

M

 	
 	
 M2 command line option

 	count=<COUNT>

 	cycle=<SEC>

 	diskSize=<GB>

 	indexCount=<COUNT>

 	onCrash=<ENUM>

 	ModNested() (클래스)

 	ModTopLevel() (클래스)

 	
 	module_a.submodule (모듈)

 	module_b.submodule (모듈)

 	MyEnum (C++ enum)

 	MyEnum::A (C++ enumerator)

 	MyScopedEnum (C++ enum)

 	MyScopedEnum::B (C++ enumerator)

 	MyScopedVisibilityEnum (C++ enum)

 	MyScopedVisibilityEnum::B (C++ enumerator)

 	MyType (C++ type)

N

 	
 	
 nghttpx command line option

 	--accesslog-file=<PATH>

 	--accesslog-format=<FORMAT>

 	--accesslog-syslog

 	--accesslog-write-early

 	--add-forwarded=<LIST>

 	--add-request-header=<HEADER>

 	--add-response-header=<HEADER>

 	--add-x-forwarded-for

 	--altsvc=<PROTOID,PORT[,HOST,[ORIGIN]]>

 	--api-max-request-body=<SIZE>

 	--backend-address-family=(auto|IPv4|IPv6)

 	--backend-connect-timeout=<DURATION>

 	--backend-connections-per-frontend=<N>

 	--backend-connections-per-host=<N>

 	--backend-http-proxy-uri=<URI>

 	--backend-http2-connection-window-size=<SIZE>

 	--backend-http2-decoder-dynamic-table-size=<SIZE>

 	--backend-http2-encoder-dynamic-table-size=<SIZE>

 	--backend-http2-max-concurrent-streams=<N>

 	--backend-http2-settings-timeout=<DURATION>

 	--backend-http2-window-size=<SIZE>

 	--backend-keep-alive-timeout=<DURATION>

 	--backend-max-backoff=<DURATION>

 	--backend-read-timeout=<DURATION>

 	--backend-request-buffer=<SIZE>

 	--backend-response-buffer=<SIZE>

 	--backend-write-timeout=<DURATION>

 	--backend=(<HOST>,<PORT>|unix:<PATH>)[;[<PATTERN>[:...]][[;<PARAM>]...]

 	--backlog=<N>

 	--cacert=<PATH>

 	--ciphers=<SUITE>

 	--client-cert-file=<PATH>

 	--client-ciphers=<SUITE>

 	--client-no-http2-cipher-black-list

 	--client-private-key-file=<PATH>

 	--client-psk-secrets=<PATH>

 	--conf=<PATH>

 	--daemon

 	--dh-param-file=<PATH>

 	--dns-cache-timeout=<DURATION>

 	--dns-lookup-timeout=<DURATION>

 	--dns-max-try=<N>

 	--ecdh-curves=<LIST>

 	--error-page=(<CODE>|*)=<PATH>

 	--errorlog-file=<PATH>

 	--errorlog-syslog

 	--fastopen=<N>

 	--fetch-ocsp-response-file=<PATH>

 	--forwarded-by=(obfuscated|ip|<VALUE>)

 	--forwarded-for=(obfuscated|ip)

 	--frontend-frame-debug

 	--frontend-http2-connection-window-size=<SIZE>

 	--frontend-http2-decoder-dynamic-table-size=<SIZE>

 	--frontend-http2-dump-request-header=<PATH>

 	--frontend-http2-dump-response-header=<PATH>

 	--frontend-http2-encoder-dynamic-table-size=<SIZE>

 	--frontend-http2-max-concurrent-streams=<N>

 	--frontend-http2-optimize-window-size

 	--frontend-http2-optimize-write-buffer-size

 	--frontend-http2-read-timeout=<DURATION>

 	--frontend-http2-setting-timeout=<DURATION>

 	--frontend-http2-window-size=<SIZE>

 	--frontend-keep-alive-timeout=<DURATION>

 	--frontend-max-requests=<N>

 	--frontend-read-timeout=<DURATION>

 	--frontend-write-timeout=<DURATION>

 	--frontend=(<HOST>,<PORT>|unix:<PATH>)[[;<PARAM>]...]

 	--help

 	--host-rewrite

 	--http2-no-cookie-crumbling

 	--http2-proxy

 	--ignore-per-pattern-mruby-error

 	--include=<PATH>

 	--insecure

 	--listener-disable-timeout=<DURATION>

 	--log-level=<LEVEL>

 	--max-request-header-fields=<N>

 	--max-response-header-fields=<N>

 	--mruby-file=<PATH>

 	--no-add-x-forwarded-proto

 	--no-http2-cipher-black-list

 	--no-kqueue

 	--no-location-rewrite

 	--no-ocsp

 	--no-server-push

 	--no-server-rewrite

 	--no-strip-incoming-early-data

 	--no-strip-incoming-x-forwarded-proto

 	--no-verify-ocsp

 	--no-via

 	--npn-list=<LIST>

 	--ocsp-startup

 	--ocsp-update-interval=<DURATION>

 	--padding=<N>

 	--pid-file=<PATH>

 	--private-key-passwd-file=<PATH>

 	--psk-secrets=<PATH>

 	--read-burst=<SIZE>

 	--read-rate=<SIZE>

 	--redirect-https-port=<PORT>

 	--request-header-field-buffer=<SIZE>

 	--response-header-field-buffer=<SIZE>

 	--rlimit-nofile=<N>

 	--server-name=<NAME>

 	--single-process

 	--single-thread

 	--stream-read-timeout=<DURATION>

 	--stream-write-timeout=<DURATION>

 	--strip-incoming-forwarded

 	--strip-incoming-x-forwarded-for

 	--subcert=<KEYPATH>:<CERTPATH>[[;<PARAM>]...]

 	--syslog-facility=<FACILITY>

 	--tls-dyn-rec-idle-timeout=<DURATION>

 	--tls-dyn-rec-warmup-threshold=<SIZE>

 	--tls-max-early-data=<SIZE>

 	--tls-max-proto-version=<VER>

 	--tls-min-proto-version=<VER>

 	--tls-no-postpone-early-data

 	--tls-sct-dir=<DIR>

 	--tls-session-cache-memcached-address-family=(auto|IPv4|IPv6)

 	--tls-session-cache-memcached-cert-file=<PATH>

 	--tls-session-cache-memcached-private-key-file=<PATH>

 	--tls-session-cache-memcached=<HOST>,<PORT>[;tls]

 	--tls-ticket-key-cipher=<CIPHER>

 	--tls-ticket-key-file=<PATH>

 	--tls-ticket-key-memcached-address-family=(auto|IPv4|IPv6)

 	--tls-ticket-key-memcached-cert-file=<PATH>

 	--tls-ticket-key-memcached-interval=<DURATION>

 	--tls-ticket-key-memcached-max-fail=<N>

 	--tls-ticket-key-memcached-max-retry=<N>

 	--tls-ticket-key-memcached-private-key-file=<PATH>

 	--tls-ticket-key-memcached=<HOST>,<PORT>[;tls]

 	--tls13-ciphers=<SUITE>

 	--tls13-client-ciphers=<SUITE>

 	--user=<USER>

 	--verify-client

 	--verify-client-cacert=<PATH>

 	--verify-client-tolerate-expired

 	--version

 	--worker-frontend-connections=<N>

 	--worker-read-burst=<SIZE>

 	--worker-read-rate=<SIZE>

 	--worker-write-burst=<SIZE>

 	--worker-write-rate=<SIZE>

 	--workers=<N>

 	--write-burst=<SIZE>

 	--write-rate=<SIZE>

 	-b

 	-c

 	-D

 	-f

 	-h

 	-k

 	-L

 	-n

 	-o

 	-s

 	-v

O

 	
 	
 onCrash=<ENUM>

 	M2 command line option

P

 	
 	payments.dotpay.DotpayProvider (내장 클래스)

S

 	
 	Sphinx::version (C++ member)

 	
 	std::array (C++ class)

V

 	
 	version (C++ member)

sample test - nghttpx(1)

SYNOPSIS

nghttpx [OPTIONS]… [<PRIVATE_KEY> <CERT>]

DESCRIPTION

A reverse proxy for HTTP/2, and HTTP/1.

	
<PRIVATE_KEY>

	Set path to server’s private key. Required unless
《no-tls》 parameter is used in --frontend option.

	
<CERT>

	Set path to server’s certificate. Required unless
《no-tls》 parameter is used in --frontend option. To
make OCSP stapling work, this must be an absolute path.

OPTIONS

The options are categorized into several groups.

Connections

	
-b, --backend=(<HOST>,<PORT>|unix:<PATH>)[;[<PATTERN>[:...]][[;<PARAM>]...]

	Set backend host and port. The multiple backend
addresses are accepted by repeating this option. UNIX
domain socket can be specified by prefixing path name
with 《unix:》 (e.g., unix:/var/run/backend.sock).

Optionally, if <PATTERN>s are given, the backend address
is only used if request matches the pattern. The
pattern matching is closely designed to ServeMux in
net/http package of Go programming language. <PATTERN>
consists of path, host + path or just host. The path
must start with 《/》. If it ends with 《/》, it matches
all request path in its subtree. To deal with the
request to the directory without trailing slash, the
path which ends with 《/》 also matches the request path
which only lacks trailing 〈/〉 (e.g., path 《/foo/》
matches request path 《/foo》). If it does not end with
《/》, it performs exact match against the request path.
If host is given, it performs a match against the
request host. For a request received on the frontend
listener with 《sni-fwd》 parameter enabled, SNI host is
used instead of a request host. If host alone is given,
《/》 is appended to it, so that it matches all request
paths under the host (e.g., specifying 《nghttp2.org》
equals to 《nghttp2.org/》). CONNECT method is treated
specially. It does not have path, and we don’t allow
empty path. To workaround this, we assume that CONNECT
method has 《/》 as path.

Patterns with host take precedence over patterns with
just path. Then, longer patterns take precedence over
shorter ones.

Host can include 《*》 in the left most position to
indicate wildcard match (only suffix match is done).
The 《*》 must match at least one character. For example,
host pattern 《*.nghttp2.org》 matches against
《www.nghttp2.org》 and 《git.ngttp2.org》, but does not
match against 《nghttp2.org》. The exact hosts match
takes precedence over the wildcard hosts match.

If path part ends with 《*》, it is treated as wildcard
path. The wildcard path behaves differently from the
normal path. For normal path, match is made around the
boundary of path component separator,》/》. On the other
hand, the wildcard path does not take into account the
path component separator. All paths which include the
wildcard path without last 《*》 as prefix, and are
strictly longer than wildcard path without last 《*》 are
matched. 《*》 must match at least one character. For
example, the pattern 《/foo*》 matches 《/foo/》 and
《/foobar》. But it does not match 《/foo》, or 《/fo》.

If <PATTERN> is omitted or empty string, 《/》 is used as
pattern, which matches all request paths (catch-all
pattern). The catch-all backend must be given.

When doing a match, nghttpx made some normalization to
pattern, request host and path. For host part, they are
converted to lower case. For path part, percent-encoded
unreserved characters defined in RFC 3986 are decoded,
and any dot-segments (《..》 and 《.》) are resolved and
removed.

For example, -b'127.0.0.1,8080;nghttp2.org/httpbin/〉
matches the request host 《nghttp2.org》 and the request
path 《/httpbin/get》, but does not match the request host
《nghttp2.org》 and the request path 《/index.html》.

The multiple <PATTERN>s can be specified, delimiting
them by 《:》. Specifying
-b'127.0.0.1,8080;nghttp2.org:www.nghttp2.org〉 has the
same effect to specify -b'127.0.0.1,8080;nghttp2.org〉
and -b'127.0.0.1,8080;www.nghttp2.org〉.

The backend addresses sharing same <PATTERN> are grouped
together forming load balancing group.

Several parameters <PARAM> are accepted after <PATTERN>.
The parameters are delimited by 《;》. The available
parameters are: 《proto=<PROTO>》, 《tls》,
《sni=<SNI_HOST>》, 《fall=<N>》, 《rise=<N>》,
《affinity=<METHOD>》, 《dns》, 《redirect-if-not-tls》,
《upgrade-scheme》, 《mruby=<PATH>》,
《read-timeout=<DURATION>》, 《write-timeout=<DURATION>》,
《group=<GROUP>》, 《group-weight=<N>》, and 《weight=<N>》.
The parameter consists of keyword, and optionally
followed by 《=》 and value. For example, the parameter
《proto=h2》 consists of the keyword 《proto》 and value
《h2》. The parameter 《tls》 consists of the keyword 《tls》
without value. Each parameter is described as follows.

The backend application protocol can be specified using
optional 《proto》 parameter, and in the form of
《proto=<PROTO>》. <PROTO> should be one of the following
list without quotes: 《h2》, 《http/1.1》. The default
value of <PROTO> is 《http/1.1》. Note that usually 《h2》
refers to HTTP/2 over TLS. But in this option, it may
mean HTTP/2 over cleartext TCP unless 《tls》 keyword is
used (see below).

TLS can be enabled by specifying optional 《tls》
parameter. TLS is not enabled by default.

With 《sni=<SNI_HOST>》 parameter, it can override the TLS
SNI field value with given <SNI_HOST>. This will
default to the backend <HOST> name

The feature to detect whether backend is online or
offline can be enabled using optional 《fall》 and 《rise》
parameters. Using 《fall=<N>》 parameter, if nghttpx
cannot connect to a this backend <N> times in a row,
this backend is assumed to be offline, and it is
excluded from load balancing. If <N> is 0, this backend
never be excluded from load balancing whatever times
nghttpx cannot connect to it, and this is the default.
There is also 《rise=<N>》 parameter. After backend was
excluded from load balancing group, nghttpx periodically
attempts to make a connection to the failed backend, and
if the connection is made successfully <N> times in a
row, the backend is assumed to be online, and it is now
eligible for load balancing target. If <N> is 0, a
backend is permanently offline, once it goes in that
state, and this is the default behaviour.

The session affinity is enabled using
《affinity=<METHOD>》 parameter. If 《ip》 is given in
<METHOD>, client IP based session affinity is enabled.
If 《cookie》 is given in <METHOD>, cookie based session
affinity is enabled. If 《none》 is given in <METHOD>,
session affinity is disabled, and this is the default.
The session affinity is enabled per <PATTERN>. If at
least one backend has 《affinity》 parameter, and its
<METHOD> is not 《none》, session affinity is enabled for
all backend servers sharing the same <PATTERN>. It is
advised to set 《affinity》 parameter to all backend
explicitly if session affinity is desired. The session
affinity may break if one of the backend gets
unreachable, or backend settings are reloaded or
replaced by API.

If 《affinity=cookie》 is used, the additional
configuration is required.
《affinity-cookie-name=<NAME>》 must be used to specify a
name of cookie to use. Optionally,
《affinity-cookie-path=<PATH>》 can be used to specify a
path which cookie is applied. The optional
《affinity-cookie-secure=<SECURE>》 controls the Secure
attribute of a cookie. The default value is 《auto》, and
the Secure attribute is determined by a request scheme.
If a request scheme is 《https》, then Secure attribute is
set. Otherwise, it is not set. If <SECURE> is 《yes》,
the Secure attribute is always set. If <SECURE> is
《no》, the Secure attribute is always omitted.

By default, name resolution of backend host name is done
at start up, or reloading configuration. If 《dns》
parameter is given, name resolution takes place
dynamically. This is useful if backend address changes
frequently. If 《dns》 is given, name resolution of
backend host name at start up, or reloading
configuration is skipped.

If 《redirect-if-not-tls》 parameter is used, the matched
backend requires that frontend connection is TLS
encrypted. If it isn’t, nghttpx responds to the request
with 308 status code, and https URI the client should
use instead is included in Location header field. The
port number in redirect URI is 443 by default, and can
be changed using --redirect-https-port option. If at
least one backend has 《redirect-if-not-tls》 parameter,
this feature is enabled for all backend servers sharing
the same <PATTERN>. It is advised to set
《redirect-if-no-tls》 parameter to all backends
explicitly if this feature is desired.

If 《upgrade-scheme》 parameter is used along with 《tls》
parameter, HTTP/2 :scheme pseudo header field is changed
to 《https》 from 《http》 when forwarding a request to this
particular backend. This is a workaround for a backend
server which requires 《https》 :scheme pseudo header
field on TLS encrypted connection.

《mruby=<PATH>》 parameter specifies a path to mruby
script file which is invoked when this pattern is
matched. All backends which share the same pattern must
have the same mruby path.

《read-timeout=<DURATION>》 and 《write-timeout=<DURATION>》
parameters specify the read and write timeout of the
backend connection when this pattern is matched. All
backends which share the same pattern must have the same
timeouts. If these timeouts are entirely omitted for a
pattern, --backend-read-timeout and
--backend-write-timeout are used.

《group=<GROUP>》 parameter specifies the name of group
this backend address belongs to. By default, it belongs
to the unnamed default group. The name of group is
unique per pattern. 《group-weight=<N>》 parameter
specifies the weight of the group. The higher weight
gets more frequently selected by the load balancing
algorithm. <N> must be [1, 256] inclusive. The weight
8 has 4 times more weight than 2. <N> must be the same
for all addresses which share the same <GROUP>. If
《group-weight》 is omitted in an address, but the other
address which belongs to the same group specifies
《group-weight》, its weight is used. If no
《group-weight》 is specified for all addresses, the
weight of a group becomes 1. 《group》 and 《group-weight》
are ignored if session affinity is enabled.

《weight=<N>》 parameter specifies the weight of the
backend address inside a group which this address
belongs to. The higher weight gets more frequently
selected by the load balancing algorithm. <N> must be
[1, 256] inclusive. The weight 8 has 4 times more
weight than weight 2. If this parameter is omitted,
weight becomes 1. 《weight》 is ignored if session
affinity is enabled.

Since 《;》 and 《:》 are used as delimiter, <PATTERN> must
not contain these characters. Since 《;》 has special
meaning in shell, the option value must be quoted.

Default: 127.0.0.1,80

	
-f, --frontend=(<HOST>,<PORT>|unix:<PATH>)[[;<PARAM>]...]

	Set frontend host and port. If <HOST> is 〈*〉, it
assumes all addresses including both IPv4 and IPv6.
UNIX domain socket can be specified by prefixing path
name with 《unix:》 (e.g., unix:/var/run/nghttpx.sock).
This option can be used multiple times to listen to
multiple addresses.

This option can take 0 or more parameters, which are
described below. Note that 《api》 and 《healthmon》
parameters are mutually exclusive.

Optionally, TLS can be disabled by specifying 《no-tls》
parameter. TLS is enabled by default.

If 《sni-fwd》 parameter is used, when performing a match
to select a backend server, SNI host name received from
the client is used instead of the request host. See
--backend option about the pattern match.

To make this frontend as API endpoint, specify 《api》
parameter. This is disabled by default. It is
important to limit the access to the API frontend.
Otherwise, someone may change the backend server, and
break your services, or expose confidential information
to the outside the world.

To make this frontend as health monitor endpoint,
specify 《healthmon》 parameter. This is disabled by
default. Any requests which come through this address
are replied with 200 HTTP status, without no body.

To accept PROXY protocol version 1 and 2 on frontend
connection, specify 《proxyproto》 parameter. This is
disabled by default.

Default: *,3000

	
--backlog=<N>

	Set listen backlog size.

Default: 65536

	
--backend-address-family=(auto|IPv4|IPv6)

	Specify address family of backend connections. If
《auto》 is given, both IPv4 and IPv6 are considered. If
《IPv4》 is given, only IPv4 address is considered. If
《IPv6》 is given, only IPv6 address is considered.

Default: auto

	
--backend-http-proxy-uri=<URI>

	Specify proxy URI in the form
http://[<USER>:<PASS>@]<PROXY>:<PORT>. If a proxy
requires authentication, specify <USER> and <PASS>.
Note that they must be properly percent-encoded. This
proxy is used when the backend connection is HTTP/2.
First, make a CONNECT request to the proxy and it
connects to the backend on behalf of nghttpx. This
forms tunnel. After that, nghttpx performs SSL/TLS
handshake with the downstream through the tunnel. The
timeouts when connecting and making CONNECT request can
be specified by --backend-read-timeout and
--backend-write-timeout options.

Performance

	
-n, --workers=<N>

	Set the number of worker threads.

Default: 1

	
--single-thread

	Run everything in one thread inside the worker process.
This feature is provided for better debugging
experience, or for the platforms which lack thread
support. If threading is disabled, this option is
always enabled.

	
--read-rate=<SIZE>

	Set maximum average read rate on frontend connection.
Setting 0 to this option means read rate is unlimited.

Default: 0

	
--read-burst=<SIZE>

	Set maximum read burst size on frontend connection.
Setting 0 to this option means read burst size is
unlimited.

Default: 0

	
--write-rate=<SIZE>

	Set maximum average write rate on frontend connection.
Setting 0 to this option means write rate is unlimited.

Default: 0

	
--write-burst=<SIZE>

	Set maximum write burst size on frontend connection.
Setting 0 to this option means write burst size is
unlimited.

Default: 0

	
--worker-read-rate=<SIZE>

	Set maximum average read rate on frontend connection per
worker. Setting 0 to this option means read rate is
unlimited. Not implemented yet.

Default: 0

	
--worker-read-burst=<SIZE>

	Set maximum read burst size on frontend connection per
worker. Setting 0 to this option means read burst size
is unlimited. Not implemented yet.

Default: 0

	
--worker-write-rate=<SIZE>

	Set maximum average write rate on frontend connection
per worker. Setting 0 to this option means write rate
is unlimited. Not implemented yet.

Default: 0

	
--worker-write-burst=<SIZE>

	Set maximum write burst size on frontend connection per
worker. Setting 0 to this option means write burst size
is unlimited. Not implemented yet.

Default: 0

	
--worker-frontend-connections=<N>

	Set maximum number of simultaneous connections frontend
accepts. Setting 0 means unlimited.

Default: 0

	
--backend-connections-per-host=<N>

	Set maximum number of backend concurrent connections
(and/or streams in case of HTTP/2) per origin host.
This option is meaningful when --http2-proxy option is
used. The origin host is determined by authority
portion of request URI (or :authority header field for
HTTP/2). To limit the number of connections per
frontend for default mode, use
--backend-connections-per-frontend.

Default: 8

	
--backend-connections-per-frontend=<N>

	Set maximum number of backend concurrent connections
(and/or streams in case of HTTP/2) per frontend. This
option is only used for default mode. 0 means
unlimited. To limit the number of connections per host
with --http2-proxy option, use
--backend-connections-per-host.

Default: 0

	
--rlimit-nofile=<N>

	Set maximum number of open files (RLIMIT_NOFILE) to <N>.
If 0 is given, nghttpx does not set the limit.

Default: 0

	
--backend-request-buffer=<SIZE>

	Set buffer size used to store backend request.

Default: 16K

	
--backend-response-buffer=<SIZE>

	Set buffer size used to store backend response.

Default: 128K

	
--fastopen=<N>

	Enables 《TCP Fast Open》 for the listening socket and
limits the maximum length for the queue of connections
that have not yet completed the three-way handshake. If
value is 0 then fast open is disabled.

Default: 0

	
--no-kqueue

	Don’t use kqueue. This option is only applicable for
the platforms which have kqueue. For other platforms,
this option will be simply ignored.

Timeout

	
--frontend-http2-read-timeout=<DURATION>

	Specify read timeout for HTTP/2 frontend connection.

Default: 3m

	
--frontend-read-timeout=<DURATION>

	Specify read timeout for HTTP/1.1 frontend connection.

Default: 1m

	
--frontend-write-timeout=<DURATION>

	Specify write timeout for all frontend connections.

Default: 30s

	
--frontend-keep-alive-timeout=<DURATION>

	Specify keep-alive timeout for frontend HTTP/1
connection.

Default: 1m

	
--stream-read-timeout=<DURATION>

	Specify read timeout for HTTP/2 streams. 0 means no
timeout.

Default: 0

	
--stream-write-timeout=<DURATION>

	Specify write timeout for HTTP/2 streams. 0 means no
timeout.

Default: 1m

	
--backend-read-timeout=<DURATION>

	Specify read timeout for backend connection.

Default: 1m

	
--backend-write-timeout=<DURATION>

	Specify write timeout for backend connection.

Default: 30s

	
--backend-connect-timeout=<DURATION>

	Specify timeout before establishing TCP connection to
backend.

Default: 30s

	
--backend-keep-alive-timeout=<DURATION>

	Specify keep-alive timeout for backend HTTP/1
connection.

Default: 2s

	
--listener-disable-timeout=<DURATION>

	After accepting connection failed, connection listener
is disabled for a given amount of time. Specifying 0
disables this feature.

Default: 30s

	
--frontend-http2-setting-timeout=<DURATION>

	Specify timeout before SETTINGS ACK is received from
client.

Default: 10s

	
--backend-http2-settings-timeout=<DURATION>

	Specify timeout before SETTINGS ACK is received from
backend server.

Default: 10s

	
--backend-max-backoff=<DURATION>

	Specify maximum backoff interval. This is used when
doing health check against offline backend (see 《fail》
parameter in --backend option). It is also used to
limit the maximum interval to temporarily disable
backend when nghttpx failed to connect to it. These
intervals are calculated using exponential backoff, and
consecutive failed attempts increase the interval. This
option caps its maximum value.

Default: 2m

SSL/TLS

	
--ciphers=<SUITE>

	Set allowed cipher list for frontend connection. The
format of the string is described in OpenSSL ciphers(1).
This option sets cipher suites for TLSv1.2 or earlier.
Use --tls13-ciphers for TLSv1.3.

Default: ECDHE-ECDSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-CHACHA20-POLY1305:ECDHE-RSA-CHACHA20-POLY1305:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES256-SHA384:ECDHE-RSA-AES256-SHA384:ECDHE-ECDSA-AES128-SHA256:ECDHE-RSA-AES128-SHA256

	
--tls13-ciphers=<SUITE>

	Set allowed cipher list for frontend connection. The
format of the string is described in OpenSSL ciphers(1).
This option sets cipher suites for TLSv1.3. Use
--ciphers for TLSv1.2 or earlier.

Default: TLS_AES_256_GCM_SHA384:TLS_CHACHA20_POLY1305_SHA256:TLS_AES_128_GCM_SHA256

	
--client-ciphers=<SUITE>

	Set allowed cipher list for backend connection. The
format of the string is described in OpenSSL ciphers(1).
This option sets cipher suites for TLSv1.2 or earlier.
Use --tls13-client-ciphers for TLSv1.3.

Default: ECDHE-ECDSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-CHACHA20-POLY1305:ECDHE-RSA-CHACHA20-POLY1305:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES256-SHA384:ECDHE-RSA-AES256-SHA384:ECDHE-ECDSA-AES128-SHA256:ECDHE-RSA-AES128-SHA256

	
--tls13-client-ciphers=<SUITE>

	Set allowed cipher list for backend connection. The
format of the string is described in OpenSSL ciphers(1).
This option sets cipher suites for TLSv1.3. Use
--tls13-client-ciphers for TLSv1.2 or earlier.

Default: TLS_AES_256_GCM_SHA384:TLS_CHACHA20_POLY1305_SHA256:TLS_AES_128_GCM_SHA256

	
--ecdh-curves=<LIST>

	Set supported curve list for frontend connections.
<LIST> is a colon separated list of curve NID or names
in the preference order. The supported curves depend on
the linked OpenSSL library. This function requires
OpenSSL >= 1.0.2.

Default: X25519:P-256:P-384:P-521

	
-k, --insecure

	Don’t verify backend server’s certificate if TLS is
enabled for backend connections.

	
--cacert=<PATH>

	Set path to trusted CA certificate file. It is used in
backend TLS connections to verify peer’s certificate.
It is also used to verify OCSP response from the script
set by --fetch-ocsp-response-file. The file must be in
PEM format. It can contain multiple certificates. If
the linked OpenSSL is configured to load system wide
certificates, they are loaded at startup regardless of
this option.

	
--private-key-passwd-file=<PATH>

	Path to file that contains password for the server’s
private key. If none is given and the private key is
password protected it’ll be requested interactively.

	
--subcert=<KEYPATH>:<CERTPATH>[[;<PARAM>]...]

	Specify additional certificate and private key file.
nghttpx will choose certificates based on the hostname
indicated by client using TLS SNI extension. If nghttpx
is built with OpenSSL >= 1.0.2, the shared elliptic
curves (e.g., P-256) between client and server are also
taken into consideration. This allows nghttpx to send
ECDSA certificate to modern clients, while sending RSA
based certificate to older clients. This option can be
used multiple times. To make OCSP stapling work,
<CERTPATH> must be absolute path.

Additional parameter can be specified in <PARAM>. The
available <PARAM> is 《sct-dir=<DIR>》.

《sct-dir=<DIR>》 specifies the path to directory which
contains *.sct files for TLS
signed_certificate_timestamp extension (RFC 6962). This
feature requires OpenSSL >= 1.0.2. See also
--tls-sct-dir option.

	
--dh-param-file=<PATH>

	Path to file that contains DH parameters in PEM format.
Without this option, DHE cipher suites are not
available.

	
--npn-list=<LIST>

	Comma delimited list of ALPN protocol identifier sorted
in the order of preference. That means most desirable
protocol comes first. This is used in both ALPN and
NPN. The parameter must be delimited by a single comma
only and any white spaces are treated as a part of
protocol string.

Default: h2,h2-16,h2-14,http/1.1

	
--verify-client

	Require and verify client certificate.

	
--verify-client-cacert=<PATH>

	Path to file that contains CA certificates to verify
client certificate. The file must be in PEM format. It
can contain multiple certificates.

	
--verify-client-tolerate-expired

	Accept expired client certificate. Operator should
handle the expired client certificate by some means
(e.g., mruby script). Otherwise, this option might
cause a security risk.

	
--client-private-key-file=<PATH>

	Path to file that contains client private key used in
backend client authentication.

	
--client-cert-file=<PATH>

	Path to file that contains client certificate used in
backend client authentication.

	
--tls-min-proto-version=<VER>

	Specify minimum SSL/TLS protocol. The name matching is
done in case-insensitive manner. The versions between
--tls-min-proto-version and --tls-max-proto-version are
enabled. If the protocol list advertised by client does
not overlap this range, you will receive the error
message 《unknown protocol》. If a protocol version lower
than TLSv1.2 is specified, make sure that the compatible
ciphers are included in --ciphers option. The default
cipher list only includes ciphers compatible with
TLSv1.2 or above. The available versions are:
TLSv1.3, TLSv1.2, TLSv1.1, and TLSv1.0

Default: TLSv1.2

	
--tls-max-proto-version=<VER>

	Specify maximum SSL/TLS protocol. The name matching is
done in case-insensitive manner. The versions between
--tls-min-proto-version and --tls-max-proto-version are
enabled. If the protocol list advertised by client does
not overlap this range, you will receive the error
message 《unknown protocol》. The available versions are:
TLSv1.3, TLSv1.2, TLSv1.1, and TLSv1.0

Default: TLSv1.3

	
--tls-ticket-key-file=<PATH>

	Path to file that contains random data to construct TLS
session ticket parameters. If aes-128-cbc is given in
--tls-ticket-key-cipher, the file must contain exactly
48 bytes. If aes-256-cbc is given in
--tls-ticket-key-cipher, the file must contain exactly
80 bytes. This options can be used repeatedly to
specify multiple ticket parameters. If several files
are given, only the first key is used to encrypt TLS
session tickets. Other keys are accepted but server
will issue new session ticket with first key. This
allows session key rotation. Please note that key
rotation does not occur automatically. User should
rearrange files or change options values and restart
nghttpx gracefully. If opening or reading given file
fails, all loaded keys are discarded and it is treated
as if none of this option is given. If this option is
not given or an error occurred while opening or reading
a file, key is generated every 1 hour internally and
they are valid for 12 hours. This is recommended if
ticket key sharing between nghttpx instances is not
required.

	
--tls-ticket-key-memcached=<HOST>,<PORT>[;tls]

	Specify address of memcached server to get TLS ticket
keys for session resumption. This enables shared TLS
ticket key between multiple nghttpx instances. nghttpx
does not set TLS ticket key to memcached. The external
ticket key generator is required. nghttpx just gets TLS
ticket keys from memcached, and use them, possibly
replacing current set of keys. It is up to extern TLS
ticket key generator to rotate keys frequently. See
《TLS SESSION TICKET RESUMPTION》 section in manual page
to know the data format in memcached entry. Optionally,
memcached connection can be encrypted with TLS by
specifying 《tls》 parameter.

	
--tls-ticket-key-memcached-address-family=(auto|IPv4|IPv6)

	Specify address family of memcached connections to get
TLS ticket keys. If 《auto》 is given, both IPv4 and IPv6
are considered. If 《IPv4》 is given, only IPv4 address
is considered. If 《IPv6》 is given, only IPv6 address is
considered.

Default: auto

	
--tls-ticket-key-memcached-interval=<DURATION>

	Set interval to get TLS ticket keys from memcached.

Default: 10m

	
--tls-ticket-key-memcached-max-retry=<N>

	Set maximum number of consecutive retries before
abandoning TLS ticket key retrieval. If this number is
reached, the attempt is considered as failure, and
《failure》 count is incremented by 1, which contributed
to the value controlled
--tls-ticket-key-memcached-max-fail option.

Default: 3

	
--tls-ticket-key-memcached-max-fail=<N>

	Set maximum number of consecutive failure before
disabling TLS ticket until next scheduled key retrieval.

Default: 2

	
--tls-ticket-key-cipher=<CIPHER>

	Specify cipher to encrypt TLS session ticket. Specify
either aes-128-cbc or aes-256-cbc. By default,
aes-128-cbc is used.

	
--tls-ticket-key-memcached-cert-file=<PATH>

	Path to client certificate for memcached connections to
get TLS ticket keys.

	
--tls-ticket-key-memcached-private-key-file=<PATH>

	Path to client private key for memcached connections to
get TLS ticket keys.

	
--fetch-ocsp-response-file=<PATH>

	Path to fetch-ocsp-response script file. It should be
absolute path.

Default: /usr/local/share/nghttp2/fetch-ocsp-response

	
--ocsp-update-interval=<DURATION>

	Set interval to update OCSP response cache.

Default: 4h

	
--ocsp-startup

	Start accepting connections after initial attempts to
get OCSP responses finish. It does not matter some of
the attempts fail. This feature is useful if OCSP
responses must be available before accepting
connections.

	
--no-verify-ocsp

	nghttpx does not verify OCSP response.

	
--no-ocsp

	Disable OCSP stapling.

	
--tls-session-cache-memcached=<HOST>,<PORT>[;tls]

	Specify address of memcached server to store session
cache. This enables shared session cache between
multiple nghttpx instances. Optionally, memcached
connection can be encrypted with TLS by specifying 《tls》
parameter.

	
--tls-session-cache-memcached-address-family=(auto|IPv4|IPv6)

	Specify address family of memcached connections to store
session cache. If 《auto》 is given, both IPv4 and IPv6
are considered. If 《IPv4》 is given, only IPv4 address
is considered. If 《IPv6》 is given, only IPv6 address is
considered.

Default: auto

	
--tls-session-cache-memcached-cert-file=<PATH>

	Path to client certificate for memcached connections to
store session cache.

	
--tls-session-cache-memcached-private-key-file=<PATH>

	Path to client private key for memcached connections to
store session cache.

	
--tls-dyn-rec-warmup-threshold=<SIZE>

	Specify the threshold size for TLS dynamic record size
behaviour. During a TLS session, after the threshold
number of bytes have been written, the TLS record size
will be increased to the maximum allowed (16K). The max
record size will continue to be used on the active TLS
session. After --tls-dyn-rec-idle-timeout has elapsed,
the record size is reduced to 1300 bytes. Specify 0 to
always use the maximum record size, regardless of idle
period. This behaviour applies to all TLS based
frontends, and TLS HTTP/2 backends.

Default: 1M

	
--tls-dyn-rec-idle-timeout=<DURATION>

	Specify TLS dynamic record size behaviour timeout. See
--tls-dyn-rec-warmup-threshold for more information.
This behaviour applies to all TLS based frontends, and
TLS HTTP/2 backends.

Default: 1s

	
--no-http2-cipher-black-list

	Allow black listed cipher suite on frontend HTTP/2
connection. See
https://tools.ietf.org/html/rfc7540#appendix-A for the
complete HTTP/2 cipher suites black list.

	
--client-no-http2-cipher-black-list

	Allow black listed cipher suite on backend HTTP/2
connection. See
https://tools.ietf.org/html/rfc7540#appendix-A for the
complete HTTP/2 cipher suites black list.

	
--tls-sct-dir=<DIR>

	Specifies the directory where *.sct files exist. All
*.sct files in <DIR> are read, and sent as
extension_data of TLS signed_certificate_timestamp (RFC
6962) to client. These *.sct files are for the
certificate specified in positional command-line
argument <CERT>, or certificate option in configuration
file. For additional certificates, use --subcert
option. This option requires OpenSSL >= 1.0.2.

	
--psk-secrets=<PATH>

	Read list of PSK identity and secrets from <PATH>. This
is used for frontend connection. The each line of input
file is formatted as <identity>:<hex-secret>, where
<identity> is PSK identity, and <hex-secret> is secret
in hex. An empty line, and line which starts with 〈#〉
are skipped. The default enabled cipher list might not
contain any PSK cipher suite. In that case, desired PSK
cipher suites must be enabled using --ciphers option.
The desired PSK cipher suite may be black listed by
HTTP/2. To use those cipher suites with HTTP/2,
consider to use --no-http2-cipher-black-list option.
But be aware its implications.

	
--client-psk-secrets=<PATH>

	Read PSK identity and secrets from <PATH>. This is used
for backend connection. The each line of input file is
formatted as <identity>:<hex-secret>, where <identity>
is PSK identity, and <hex-secret> is secret in hex. An
empty line, and line which starts with 〈#〉 are skipped.
The first identity and secret pair encountered is used.
The default enabled cipher list might not contain any
PSK cipher suite. In that case, desired PSK cipher
suites must be enabled using --client-ciphers option.
The desired PSK cipher suite may be black listed by
HTTP/2. To use those cipher suites with HTTP/2,
consider to use --client-no-http2-cipher-black-list
option. But be aware its implications.

	
--tls-no-postpone-early-data

	By default, nghttpx postpones forwarding HTTP requests
sent in early data, including those sent in partially in
it, until TLS handshake finishes. If all backend server
recognizes 《Early-Data》 header field, using this option
makes nghttpx not postpone forwarding request and get
full potential of 0-RTT data.

	
--tls-max-early-data=<SIZE>

	Sets the maximum amount of 0-RTT data that server
accepts.

Default: 16K

HTTP/2

	
-c, --frontend-http2-max-concurrent-streams=<N>

	Set the maximum number of the concurrent streams in one
frontend HTTP/2 session.

Default: 100

	
--backend-http2-max-concurrent-streams=<N>

	Set the maximum number of the concurrent streams in one
backend HTTP/2 session. This sets maximum number of
concurrent opened pushed streams. The maximum number of
concurrent requests are set by a remote server.

Default: 100

	
--frontend-http2-window-size=<SIZE>

	Sets the per-stream initial window size of HTTP/2
frontend connection.

Default: 65535

	
--frontend-http2-connection-window-size=<SIZE>

	Sets the per-connection window size of HTTP/2 frontend
connection.

Default: 65535

	
--backend-http2-window-size=<SIZE>

	Sets the initial window size of HTTP/2 backend
connection.

Default: 65535

	
--backend-http2-connection-window-size=<SIZE>

	Sets the per-connection window size of HTTP/2 backend
connection.

Default: 2147483647

	
--http2-no-cookie-crumbling

	Don’t crumble cookie header field.

	
--padding=<N>

	Add at most <N> bytes to a HTTP/2 frame payload as
padding. Specify 0 to disable padding. This option is
meant for debugging purpose and not intended to enhance
protocol security.

	
--no-server-push

	Disable HTTP/2 server push. Server push is supported by
default mode and HTTP/2 frontend via Link header field.
It is also supported if both frontend and backend are
HTTP/2 in default mode. In this case, server push from
backend session is relayed to frontend, and server push
via Link header field is also supported.

	
--frontend-http2-optimize-write-buffer-size

	(Experimental) Enable write buffer size optimization in
frontend HTTP/2 TLS connection. This optimization aims
to reduce write buffer size so that it only contains
bytes which can send immediately. This makes server
more responsive to prioritized HTTP/2 stream because the
buffering of lower priority stream is reduced. This
option is only effective on recent Linux platform.

	
--frontend-http2-optimize-window-size

	(Experimental) Automatically tune connection level
window size of frontend HTTP/2 TLS connection. If this
feature is enabled, connection window size starts with
the default window size, 65535 bytes. nghttpx
automatically adjusts connection window size based on
TCP receiving window size. The maximum window size is
capped by the value specified by
--frontend-http2-connection-window-size. Since the
stream is subject to stream level window size, it should
be adjusted using --frontend-http2-window-size option as
well. This option is only effective on recent Linux
platform.

	
--frontend-http2-encoder-dynamic-table-size=<SIZE>

	Specify the maximum dynamic table size of HPACK encoder
in the frontend HTTP/2 connection. The decoder (client)
specifies the maximum dynamic table size it accepts.
Then the negotiated dynamic table size is the minimum of
this option value and the value which client specified.

Default: 4K

	
--frontend-http2-decoder-dynamic-table-size=<SIZE>

	Specify the maximum dynamic table size of HPACK decoder
in the frontend HTTP/2 connection.

Default: 4K

	
--backend-http2-encoder-dynamic-table-size=<SIZE>

	Specify the maximum dynamic table size of HPACK encoder
in the backend HTTP/2 connection. The decoder (backend)
specifies the maximum dynamic table size it accepts.
Then the negotiated dynamic table size is the minimum of
this option value and the value which backend specified.

Default: 4K

	
--backend-http2-decoder-dynamic-table-size=<SIZE>

	Specify the maximum dynamic table size of HPACK decoder
in the backend HTTP/2 connection.

Default: 4K

Mode

	
(default mode)

	Accept HTTP/2, and HTTP/1.1 over SSL/TLS. 《no-tls》
parameter is used in --frontend option, accept HTTP/2
and HTTP/1.1 over cleartext TCP. The incoming HTTP/1.1
connection can be upgraded to HTTP/2 through HTTP
Upgrade.

	
-s, --http2-proxy

	Like default mode, but enable forward proxy. This is so
called HTTP/2 proxy mode.

Logging

	
-L, --log-level=<LEVEL>

	Set the severity level of log output. <LEVEL> must be
one of INFO, NOTICE, WARN, ERROR and FATAL.

Default: NOTICE

	
--accesslog-file=<PATH>

	Set path to write access log. To reopen file, send USR1
signal to nghttpx.

	
--accesslog-syslog

	Send access log to syslog. If this option is used,
--accesslog-file option is ignored.

	
--accesslog-format=<FORMAT>

	Specify format string for access log. The default
format is combined format. The following variables are
available:

	$remote_addr: client IP address.

	$time_local: local time in Common Log format.

	$time_iso8601: local time in ISO 8601 format.

	$request: HTTP request line.

	$status: HTTP response status code.

	$body_bytes_sent: the number of bytes sent to client
as response body.

	$http_<VAR>: value of HTTP request header <VAR> where
〈_〉 in <VAR> is replaced with 〈-〈.

	$remote_port: client port.

	$server_port: server port.

	$request_time: request processing time in seconds with
milliseconds resolution.

	$pid: PID of the running process.

	$alpn: ALPN identifier of the protocol which generates
the response. For HTTP/1, ALPN is always http/1.1,
regardless of minor version.

	$tls_cipher: cipher used for SSL/TLS connection.

	$tls_client_fingerprint_sha256: SHA-256 fingerprint of
client certificate.

	$tls_client_fingerprint_sha1: SHA-1 fingerprint of
client certificate.

	$tls_client_subject_name: subject name in client
certificate.

	$tls_client_issuer_name: issuer name in client
certificate.

	$tls_client_serial: serial number in client
certificate.

	$tls_protocol: protocol for SSL/TLS connection.

	$tls_session_id: session ID for SSL/TLS connection.

	$tls_session_reused: 《r》 if SSL/TLS session was
reused. Otherwise, 《.》

	$tls_sni: SNI server name for SSL/TLS connection.

	$backend_host: backend host used to fulfill the
request. 《-》 if backend host is not available.

	$backend_port: backend port used to fulfill the
request. 《-》 if backend host is not available.

	$method: HTTP method

	$path: Request path including query. For CONNECT
request, authority is recorded.

	$path_without_query: $path up to the first 〈?〉
character. For CONNECT request, authority is
recorded.

	$protocol_version: HTTP version (e.g., HTTP/1.1,
HTTP/2)

The variable can be enclosed by 《{》 and 《}》 for
disambiguation (e.g., ${remote_addr}).

Default: $remote_addr - - [$time_local] "$request" $status $body_bytes_sent "$http_referer" "$http_user_agent"

	
--accesslog-write-early

	Write access log when response header fields are
received from backend rather than when request
transaction finishes.

	
--errorlog-file=<PATH>

	Set path to write error log. To reopen file, send USR1
signal to nghttpx. stderr will be redirected to the
error log file unless --errorlog-syslog is used.

Default: /dev/stderr

	
--errorlog-syslog

	Send error log to syslog. If this option is used,
--errorlog-file option is ignored.

	
--syslog-facility=<FACILITY>

	Set syslog facility to <FACILITY>.

Default: daemon

HTTP

	
--add-x-forwarded-for

	Append X-Forwarded-For header field to the downstream
request.

	
--strip-incoming-x-forwarded-for

	Strip X-Forwarded-For header field from inbound client
requests.

	
--no-add-x-forwarded-proto

	Don’t append additional X-Forwarded-Proto header field
to the backend request. If inbound client sets
X-Forwarded-Proto, and
--no-strip-incoming-x-forwarded-proto option is used,
they are passed to the backend.

	
--no-strip-incoming-x-forwarded-proto

	Don’t strip X-Forwarded-Proto header field from inbound
client requests.

	
--add-forwarded=<LIST>

	Append RFC 7239 Forwarded header field with parameters
specified in comma delimited list <LIST>. The supported
parameters are 《by》, 《for》, 《host》, and 《proto》. By
default, the value of 《by》 and 《for》 parameters are
obfuscated string. See --forwarded-by and
--forwarded-for options respectively. Note that nghttpx
does not translate non-standard X-Forwarded-* header
fields into Forwarded header field, and vice versa.

	
--strip-incoming-forwarded

	Strip Forwarded header field from inbound client
requests.

	
--forwarded-by=(obfuscated|ip|<VALUE>)

	Specify the parameter value sent out with 《by》 parameter
of Forwarded header field. If 《obfuscated》 is given,
the string is randomly generated at startup. If 《ip》 is
given, the interface address of the connection,
including port number, is sent with 《by》 parameter. In
case of UNIX domain socket, 《localhost》 is used instead
of address and port. User can also specify the static
obfuscated string. The limitation is that it must start
with 《_》, and only consists of character set
[A-Za-z0-9._-], as described in RFC 7239.

Default: obfuscated

	
--forwarded-for=(obfuscated|ip)

	Specify the parameter value sent out with 《for》
parameter of Forwarded header field. If 《obfuscated》 is
given, the string is randomly generated for each client
connection. If 《ip》 is given, the remote client address
of the connection, without port number, is sent with
《for》 parameter. In case of UNIX domain socket,
《localhost》 is used instead of address.

Default: obfuscated

	
--no-via

	Don’t append to Via header field. If Via header field
is received, it is left unaltered.

	
--no-strip-incoming-early-data

	Don’t strip Early-Data header field from inbound client
requests.

	
--no-location-rewrite

	Don’t rewrite location header field in default mode.
When --http2-proxy is used, location header field will
not be altered regardless of this option.

	
--host-rewrite

	Rewrite host and :authority header fields in default
mode. When --http2-proxy is used, these headers will
not be altered regardless of this option.

	
--altsvc=<PROTOID,PORT[,HOST,[ORIGIN]]>

	Specify protocol ID, port, host and origin of
alternative service. <HOST> and <ORIGIN> are optional.
They are advertised in alt-svc header field only in
HTTP/1.1 frontend. This option can be used multiple
times to specify multiple alternative services.
Example: --altsvc=h2,443

	
--add-request-header=<HEADER>

	Specify additional header field to add to request header
set. This option just appends header field and won’t
replace anything already set. This option can be used
several times to specify multiple header fields.
Example: --add-request-header=》foo: bar》

	
--add-response-header=<HEADER>

	Specify additional header field to add to response
header set. This option just appends header field and
won’t replace anything already set. This option can be
used several times to specify multiple header fields.
Example: --add-response-header=》foo: bar》

	
--request-header-field-buffer=<SIZE>

	Set maximum buffer size for incoming HTTP request header
field list. This is the sum of header name and value in
bytes. If trailer fields exist, they are counted
towards this number.

Default: 64K

	
--max-request-header-fields=<N>

	Set maximum number of incoming HTTP request header
fields. If trailer fields exist, they are counted
towards this number.

Default: 100

	
--response-header-field-buffer=<SIZE>

	Set maximum buffer size for incoming HTTP response
header field list. This is the sum of header name and
value in bytes. If trailer fields exist, they are
counted towards this number.

Default: 64K

	
--max-response-header-fields=<N>

	Set maximum number of incoming HTTP response header
fields. If trailer fields exist, they are counted
towards this number.

Default: 500

	
--error-page=(<CODE>|*)=<PATH>

	Set file path to custom error page served when nghttpx
originally generates HTTP error status code <CODE>.
<CODE> must be greater than or equal to 400, and at most
599. If 《*》 is used instead of <CODE>, it matches all
HTTP status code. If error status code comes from
backend server, the custom error pages are not used.

	
--server-name=<NAME>

	Change server response header field value to <NAME>.

Default: nghttpx

	
--no-server-rewrite

	Don’t rewrite server header field in default mode. When
--http2-proxy is used, these headers will not be altered
regardless of this option.

	
--redirect-https-port=<PORT>

	Specify the port number which appears in Location header
field when redirect to HTTPS URI is made due to
《redirect-if-not-tls》 parameter in --backend option.

Default: 443

API

	
--api-max-request-body=<SIZE>

	Set the maximum size of request body for API request.

Default: 32M

DNS

	
--dns-cache-timeout=<DURATION>

	Set duration that cached DNS results remain valid. Note
that nghttpx caches the unsuccessful results as well.

Default: 10s

	
--dns-lookup-timeout=<DURATION>

	Set timeout that DNS server is given to respond to the
initial DNS query. For the 2nd and later queries,
server is given time based on this timeout, and it is
scaled linearly.

Default: 5s

	
--dns-max-try=<N>

	Set the number of DNS query before nghttpx gives up name
lookup.

Default: 2

	
--frontend-max-requests=<N>

	The number of requests that single frontend connection
can process. For HTTP/2, this is the number of streams
in one HTTP/2 connection. For HTTP/1, this is the
number of keep alive requests. This is hint to nghttpx,
and it may allow additional few requests. The default
value is unlimited.

Debug

	
--frontend-http2-dump-request-header=<PATH>

	Dumps request headers received by HTTP/2 frontend to the
file denoted in <PATH>. The output is done in HTTP/1
header field format and each header block is followed by
an empty line. This option is not thread safe and MUST
NOT be used with option -n<N>, where <N> >= 2.

	
--frontend-http2-dump-response-header=<PATH>

	Dumps response headers sent from HTTP/2 frontend to the
file denoted in <PATH>. The output is done in HTTP/1
header field format and each header block is followed by
an empty line. This option is not thread safe and MUST
NOT be used with option -n<N>, where <N> >= 2.

	
-o, --frontend-frame-debug

	Print HTTP/2 frames in frontend to stderr. This option
is not thread safe and MUST NOT be used with option
-n=N, where N >= 2.

Process

	
-D, --daemon

	Run in a background. If -D is used, the current working
directory is changed to 〈/〉.

	
--pid-file=<PATH>

	Set path to save PID of this program.

	
--user=<USER>

	Run this program as <USER>. This option is intended to
be used to drop root privileges.

	
--single-process

	Run this program in a single process mode for debugging
purpose. Without this option, nghttpx creates at least
2 processes: master and worker processes. If this
option is used, master and worker are unified into a
single process. nghttpx still spawns additional process
if neverbleed is used. In the single process mode, the
signal handling feature is disabled.

Scripting

	
--mruby-file=<PATH>

	Set mruby script file

	
--ignore-per-pattern-mruby-error

	Ignore mruby compile error for per-pattern mruby script
file. If error occurred, it is treated as if no mruby
file were specified for the pattern.

Misc

	
--conf=<PATH>

	Load configuration from <PATH>. Please note that
nghttpx always tries to read the default configuration
file if --conf is not given.

Default: /etc/nghttpx/nghttpx.conf

	
--include=<PATH>

	Load additional configurations from <PATH>. File <PATH>
is read when configuration parser encountered this
option. This option can be used multiple times, or even
recursively.

	
-v, --version

	Print version and exit.

	
-h, --help

	Print this help and exit.

The <SIZE> argument is an integer and an optional unit (e.g., 10K is
10 * 1024). Units are K, M and G (powers of 1024).

The <DURATION> argument is an integer and an optional unit (e.g., 1s
is 1 second and 500ms is 500 milliseconds). Units are h, m, s or ms
(hours, minutes, seconds and milliseconds, respectively). If a unit
is omitted, a second is used as unit.

FILES

	/etc/nghttpx/nghttpx.conf
	The default configuration file path nghttpx searches at startup.
The configuration file path can be changed using --conf
option.

Those lines which are staring # are treated as comment.

The option name in the configuration file is the long command-line
option name with leading -- stripped (e.g., frontend). Put
= between option name and value. Don’t put extra leading or
trailing spaces.

When specifying arguments including characters which have special
meaning to a shell, we usually use quotes so that shell does not
interpret them. When writing this configuration file, quotes for
this purpose must not be used. For example, specify additional
request header field, do this:

add-request-header=foo: bar

instead of:

add-request-header="foo: bar"

The options which do not take argument in the command-line take
argument in the configuration file. Specify yes as an argument
(e.g., http2-proxy=yes). If other string is given, it is
ignored.

To specify private key and certificate file which are given as
positional arguments in command-line, use private-key-file and
certificate-file.

--conf option cannot be used in the configuration file and
will be ignored if specified.

	Error log
	Error log is written to stderr by default. It can be configured
using --errorlog-file. The format of log message is as
follows:

<datetime> <master-pid> <current-pid> <thread-id> <level> (<filename>:<line>) <msg>

	<datetime>
	It is a combination of date and time when the log is written. It
is in ISO 8601 format.

	<master-pid>
	It is a master process ID.

	<current-pid>
	It is a process ID which writes this log.

	<thread-id>
	It is a thread ID which writes this log. It would be unique
within <current-pid>.

	<filename> and <line>
	They are source file name, and line number which produce this log.

	<msg>
	It is a log message body.

SIGNALS

	SIGQUIT
	Shutdown gracefully. First accept pending connections and stop
accepting connection. After all connections are handled, nghttpx
exits.

	SIGHUP
	Reload configuration file given in --conf.

	SIGUSR1
	Reopen log files.

SIGUSR2

Fork and execute nghttpx. It will execute the binary in the same
path with same command-line arguments and environment variables. As
of nghttpx version 1.20.0, the new master process sends SIGQUIT to
the original master process when it is ready to serve requests. For
the earlier versions of nghttpx, user has to send SIGQUIT to the
original master process.

The difference between SIGUSR2 (+ SIGQUIT) and SIGHUP is that former
is usually used to execute new binary, and the master process is
newly spawned. On the other hand, the latter just reloads
configuration file, and the same master process continues to exist.

참고

nghttpx consists of multiple processes: one process for processing
these signals, and another one for processing requests. The former
spawns the latter. The former is called master process, and the
latter is called worker process. If neverbleed is enabled, the
worker process spawns neverbleed daemon process which does RSA key
processing. The above signal must be sent to the master process.
If the other processes received one of them, it is ignored. This
behaviour of these processes may change in the future release. In
other words, in the future release, the processes other than master
process may terminate upon the reception of these signals.
Therefore these signals should not be sent to the processes other
than master process.

SERVER PUSH

nghttpx supports HTTP/2 server push in default mode with Link header
field. nghttpx looks for Link header field (RFC 5988 [http://tools.ietf.org/html/rfc5988]) in response headers from
backend server and extracts URI-reference with parameter
rel=preload (see preload [http://w3c.github.io/preload/#interoperability-with-http-link-header])
and pushes those URIs to the frontend client. Here is a sample Link
header field to initiate server push:

Link: </fonts/font.woff>; rel=preload
Link: </css/theme.css>; rel=preload

Currently, the following restriction is applied for server push:

	The associated stream must have method 《GET》 or 《POST》. The
associated stream’s status code must be 200.

This limitation may be loosened in the future release.

nghttpx also supports server push if both frontend and backend are
HTTP/2 in default mode. In this case, in addition to server push via
Link header field, server push from backend is forwarded to frontend
HTTP/2 session.

HTTP/2 server push will be disabled if --http2-proxy is
used.

UNIX DOMAIN SOCKET

nghttpx supports UNIX domain socket with a filename for both frontend
and backend connections.

Please note that current nghttpx implementation does not delete a
socket with a filename. And on start up, if nghttpx detects that the
specified socket already exists in the file system, nghttpx first
deletes it. However, if SIGUSR2 is used to execute new binary and
both old and new configurations use same filename, new binary does not
delete the socket and continues to use it.

OCSP STAPLING

OCSP query is done using external Python script
fetch-ocsp-response, which has been originally developed in Perl
as part of h2o project (https://github.com/h2o/h2o), and was
translated into Python.

The script file is usually installed under
$(prefix)/share/nghttp2/ directory. The actual path to script can
be customized using --fetch-ocsp-response-file option.

If OCSP query is failed, previous OCSP response, if any, is continued
to be used.

--fetch-ocsp-response-file option provides wide range of
possibility to manage OCSP response. It can take an arbitrary script
or executable. The requirement is that it supports the command-line
interface of fetch-ocsp-response script, and it must return a
valid DER encoded OCSP response on success. It must return exit code
0 on success, and 75 for temporary error, and the other error code for
generic failure. For large cluster of servers, it is not efficient
for each server to perform OCSP query using fetch-ocsp-response.
Instead, you can retrieve OCSP response in some way, and store it in a
disk or a shared database. Then specify a program in
--fetch-ocsp-response-file to fetch it from those stores.
This could provide a way to share the OCSP response between fleet of
servers, and also any OCSP query strategy can be applied which may be
beyond the ability of nghttpx itself or fetch-ocsp-response
script.

TLS SESSION RESUMPTION

nghttpx supports TLS session resumption through both session ID and
session ticket.

SESSION ID RESUMPTION

By default, session ID is shared by all worker threads.

If --tls-session-cache-memcached is given, nghttpx will
insert serialized session data to memcached with
nghttpx:tls-session-cache: + lowercase hex string of session ID
as a memcached entry key, with expiry time 12 hours. Session timeout
is set to 12 hours.

By default, connections to memcached server are not encrypted. To
enable encryption, use tls keyword in
--tls-session-cache-memcached option.

TLS SESSION TICKET RESUMPTION

By default, session ticket is shared by all worker threads. The
automatic key rotation is also enabled by default. Every an hour, new
encryption key is generated, and previous encryption key becomes
decryption only key. We set session timeout to 12 hours, and thus we
keep at most 12 keys.

If --tls-ticket-key-memcached is given, encryption keys are
retrieved from memcached. nghttpx just reads keys from memcached; one
has to deploy key generator program to update keys frequently (e.g.,
every 1 hour). The example key generator tlsticketupdate.go is
available under contrib directory in nghttp2 archive. The memcached
entry key is nghttpx:tls-ticket-key. The data format stored in
memcached is the binary format described below:

+--------------+-------+----------------+
| VERSION (4) |LEN (2)|KEY(48 or 80) ...
+--------------+-------+----------------+
 ^ |
 | |
 +------------------------+
 (LEN, KEY) pair can be repeated

All numbers in the above figure is bytes. All integer fields are
network byte order.

First 4 bytes integer VERSION field, which must be 1. The 2 bytes
integer LEN field gives the length of following KEY field, which
contains key. If --tls-ticket-key-cipher=aes-128-cbc is
used, LEN must be 48. If
--tls-ticket-key-cipher=aes-256-cbc is used, LEN must be
80. LEN and KEY pair can be repeated multiple times to store multiple
keys. The key appeared first is used as encryption key. All the
remaining keys are used as decryption only.

By default, connections to memcached server are not encrypted. To
enable encryption, use tls keyword in
--tls-ticket-key-memcached option.

If --tls-ticket-key-file is given, encryption key is read
from the given file. In this case, nghttpx does not rotate key
automatically. To rotate key, one has to restart nghttpx (see
SIGNALS).

CERTIFICATE TRANSPARENCY

nghttpx supports TLS signed_certificate_timestamp extension (RFC
6962 [https://tools.ietf.org/html/rfc6962]). The relevant options
are --tls-sct-dir and sct-dir parameter in
--subcert. They takes a directory, and nghttpx reads all
files whose extension is .sct under the directory. The *.sct
files are encoded as SignedCertificateTimestamp struct described
in section 3.2 of RFC 69662 [https://tools.ietf.org/html/rfc6962#section-3.2]. This format is
the same one used by nginx-ct [https://github.com/grahamedgecombe/nginx-ct] and mod_ssl_ct [https://httpd.apache.org/docs/trunk/mod/mod_ssl_ct.html].
ct-submit [https://github.com/grahamedgecombe/ct-submit] can be
used to submit certificates to log servers, and obtain the
SignedCertificateTimestamp struct which can be used with nghttpx.

MRUBY SCRIPTING

경고

The current mruby extension API is experimental and not frozen. The
API is subject to change in the future release.

경고

Almost all string value returned from method, or attribute is a
fresh new mruby string, which involves memory allocation, and
copies. Therefore, it is strongly recommended to store a return
value in a local variable, and use it, instead of calling method or
accessing attribute repeatedly.

nghttpx allows users to extend its capability using mruby scripts.
nghttpx has 2 hook points to execute mruby script: request phase and
response phase. The request phase hook is invoked after all request
header fields are received from client. The response phase hook is
invoked after all response header fields are received from backend
server. These hooks allows users to modify header fields, or common
HTTP variables, like authority or request path, and even return custom
response without forwarding request to backend servers.

There are 2 levels of mruby script invocations: global and
per-pattern. The global mruby script is set by --mruby-file
option and is called for all requests. The per-pattern mruby script
is set by 《mruby》 parameter in -b option. It is invoked for
a request which matches the particular pattern. The order of hook
invocation is: global request phase hook, per-pattern request phase
hook, per-pattern response phase hook, and finally global response
phase hook. If a hook returns a response, any later hooks are not
invoked. The global request hook is invoked before the pattern
matching is made and changing request path may affect the pattern
matching.

Please note that request and response hooks of per-pattern mruby
script for a single request might not come from the same script. This
might happen after a request hook is executed, backend failed for some
reason, and at the same time, backend configuration is replaced by API
request, and then the request uses new configuration on retry. The
response hook from new configuration, if it is specified, will be
invoked.

The all mruby script will be evaluated once per thread on startup, and
it must instantiate object and evaluate it as the return value (e.g.,
App.new). This object is called app object. If app object
defines on_req method, it is called with :rb:class:`Nghttpx::Env`
object on request hook. Similarly, if app object defines on_resp
method, it is called with :rb:class:`Nghttpx::Env` object on response
hook. For each method invocation, user can can access
:rb:class:`Nghttpx::Request` and :rb:class:`Nghttpx::Response` objects
via :rb:attr:`Nghttpx::Env#req` and :rb:attr:`Nghttpx::Env#resp`
respectively.

MRUBY EXAMPLES

Modify request path:

class App
 def on_req(env)
 env.req.path = "/apps#{env.req.path}"
 end
end

App.new

Don’t forget to instantiate and evaluate object at the last line.

Restrict permission of viewing a content to a specific client
addresses:

class App
 def on_req(env)
 allowed_clients = ["127.0.0.1", "::1"]

 if env.req.path.start_with?("/log/") &&
 !allowed_clients.include?(env.remote_addr) then
 env.resp.status = 404
 env.resp.return "permission denied"
 end
 end
end

App.new

API ENDPOINTS

nghttpx exposes API endpoints to manipulate it via HTTP based API. By
default, API endpoint is disabled. To enable it, add a dedicated
frontend for API using --frontend option with 《api》
parameter. All requests which come from this frontend address, will
be treated as API request.

The response is normally JSON dictionary, and at least includes the
following keys:

	status
	The status of the request processing. The following values are
defined:

	Success
	The request was successful.

	Failure
	The request was failed. No change has been made.

	code
	HTTP status code

Additionally, depending on the API endpoint, data key may be
present, and its value contains the API endpoint specific data.

We wrote 《normally》, since nghttpx may return ordinal HTML response in
some cases where the error has occurred before reaching API endpoint
(e.g., header field is too large).

The following section describes available API endpoints.

POST /api/v1beta1/backendconfig

This API replaces the current backend server settings with the
requested ones. The request method should be POST, but PUT is also
acceptable. The request body must be nghttpx configuration file
format. For configuration file format, see FILES section. The
line separator inside the request body must be single LF (0x0A).
Currently, only backend option is parsed, the
others are simply ignored. The semantics of this API is replace the
current backend with the backend options in request body. Describe
the desired set of backend severs, and nghttpx makes it happen. If
there is no backend option is found in request
body, the current set of backend is replaced with the backend option’s default value, which is 127.0.0.1,80.

The replacement is done instantly without breaking existing
connections or requests. It also avoids any process creation as is
the case with hot swapping with signals.

The one limitation is that only numeric IP address is allowed in
backend in request body unless 《dns》 parameter
is used while non numeric hostname is allowed in command-line or
configuration file is read using --conf.

GET /api/v1beta1/configrevision

This API returns configuration revision of the current nghttpx. The
configuration revision is opaque string, and it changes after each
reloading by SIGHUP. With this API, an external application knows
that whether nghttpx has finished reloading its configuration by
comparing the configuration revisions between before and after
reloading. It is recommended to disable persistent (keep-alive)
connection for this purpose in order to avoid to send a request using
the reused connection which may bound to an old process.

This API returns response including data key. Its value is JSON
object, and it contains at least the following key:

	configRevision
	The configuration revision of the current nghttpx

SEE ALSO

nghttp(1), nghttpd(1), h2load(1)

sample test API documentation and generated content

Table of Contents

	sample test API documentation and generated content

	C++ API

	JavaScript API

	Generated Index

	Optional parameter args

	Data

	test_py_module

C++ API

	
type MyType

	Some type

	
const MyType Foo(const MyType bar)

	Some function type thing

	
template<typename T, std::size_t N>
class std::array

	Some cpp class

	
float Sphinx::version

	The description of Sphinx::version.

	
int version

	The description of version.

	
typedef std::vector<int> List

	The description of List type.

	
enum MyEnum

	An unscoped enum.

	
enumerator A

	

	
enum class MyScopedEnum

	A scoped enum.

	
enumerator B

	

	
protected enum struct MyScopedVisibilityEnum : std::underlying_type<MySpecificEnum>::type

	A scoped enum with non-default visibility, and with a specified underlying type.

	
enumerator B

	

JavaScript API

	Link to ModTopLevel()

	
class module_a.submodule.ModTopLevel()

	
	Link to mod_child_1()

	Link to ModTopLevel.mod_child_1()

	
ModTopLevel.mod_child_1()

	
	Link to mod_child_2()

	
ModTopLevel.mod_child_2()

	
	Link to module_a.submodule.ModTopLevel.mod_child_1()

	Link to ModTopLevel()

	
class module_b.submodule.ModNested()

	
	
ModNested.nested_child_1()

	
	Link to nested_child_2()

	
ModNested.nested_child_2()

	
	Link to nested_child_1()

Generated Index

Part of the sphinx build process in generate and index file: 색인.

Optional parameter args

At this point optional parameters cannot be generated from code [https://groups.google.com/forum/#!topic/sphinx-users/_qfsVT5Vxpw].
However, some projects will manually do it, like so:

This example comes from django-payments module docs [http://django-payments.readthedocs.org/en/latest/modules.html#payments.authorizenet.AuthorizeNetProvide].

	
class payments.dotpay.DotpayProvider(seller_id, pin[, channel=0[, lock=False], lang='pl'])

	This backend implements payments using a popular Polish gateway, Dotpay.pl [http://www.dotpay.pl].

Due to API limitations there is no support for transferring purchased items.

	매개변수

	
	seller_id – Seller ID assigned by Dotpay

	pin – PIN assigned by Dotpay

	channel – Default payment channel (consult reference guide)

	lang – UI language

	lock – Whether to disable channels other than the default selected above

Data

	
Data_item_1

	
Data_item_2

	
Data_item_3

	Lorem ipsum dolor sit amet, consectetur adipiscing elit. Fusce congue elit eu hendrerit mattis.

Some data link Data_item_1.

 _static/plus.png

_static/file.png

_static/minus.png

_images/opentracing.png
TRACE

SPANS

_images/0005.png
HTTP Transaction

foo.com

bar.com

baz.com

_images/0006.png
HTTP Transaction

baz.com

foo.com bar.com
/ Module #1 \
Module #2-1 Module #2-2|

ool

Module #3

nav.xhtml

 Table of Contents

 		
 M2 Reference

 		
 Overview

 		
 서비스 환경

 		
 문제 정의

 		
 솔루션

 		
 Architecture

 		
 Call Chain

 		
 모듈

 		
 m2.global

 		
 cacheEnv

 		
 storage

 		
 memory

 		
 cleanUp

 		
 config

 		
 미분류 TO DO

 		
 Virtual Host Componenets

 		
 Functions

 		
 API

 		
 CLI

 		
 Demo

 		
 Tips

_images/0002.png
Runtime

v

Virtual host

Virtual host

Virtual host

_images/0004.png
Cache ‘resized image’

Image Reformer

Cache “origin image’

Origin

_images/0001.png
Workload

Call Chain

Virtual Host

Modules

Runtime

